Fixpunktfreie Permutationen: Unterschied zwischen den Versionen
Zur Navigation springen
Zur Suche springen
Zeile 63: | Zeile 63: | ||
* mit ungefähr 1/3 Wahrscheinlichkeit tanzt mindestens '''ein Paar unter vier Paaren''' zusammen, wenn ihre Paarungen gelost werden | * mit ungefähr 1/3 Wahrscheinlichkeit tanzt mindestens '''ein Paar unter vier Paaren''' zusammen, wenn ihre Paarungen gelost werden | ||
* sitzt in 62,5% aller Fälle mindestens eine von 4 Schülerinnen in der zweiten Prüfung am selben Platz | * sitzt in 62,5% aller Fälle mindestens eine von 4 Schülerinnen in der zweiten Prüfung am selben Platz | ||
− | |||
:-) | :-) | ||
− | + | ==Was passiert, wenn die zahlen immer mehr werden?== | |
− | |||
* [https://ide.cube.codes/?init=loadFromUrl&url=https://share-repository.cube.codes/v1/appStates/5b5f8592-c7f5-4a0a-9d76-ee97abd946f7 direkt zu cube.codes] | * [https://ide.cube.codes/?init=loadFromUrl&url=https://share-repository.cube.codes/v1/appStates/5b5f8592-c7f5-4a0a-9d76-ee97abd946f7 direkt zu cube.codes] |
Version vom 31. Mai 2022, 20:15 Uhr
Permutationen per Hand aufzählen
Alle Permutationen der Zahlen 1 2 3 4:
- An erster Stelle ist die 1, ... dann kann an zweiter Stelle 2, 3 oder 4 sein
- 1 2 3 4
- 1 2 4 3
- 1 3 2 4
- 1 3 4 2
- 1 4 2 3
- 1 4 3 2
- An erster Stelle ist die 2, ... dann kann an zweiter Stelle 1, 3 oder 4 sein
- 2 1 3 4
- 2 1 4 3
- 2 3 1 4
- 2 3 4 1
- 2 4 1 3
- 2 4 3 1
- An erster Stelle ist die 3, ... dann kann an zweiter Stelle 1, 2 oder 4 sein
- 3 1 2 4
- 3 1 4 2
- 3 2 1 4
- 3 2 4 1
- 3 4 1 2
- 3 4 2 1
- An erster Stelle ist die 4, ... dann kann an zweiter Stelle 1, 2 oder 3 sein
- 4 1 2 3
- 4 1 3 2
- 4 2 1 3
- 4 2 3 1
- 4 3 1 2
- 4 3 2 1
... sind also insgesamt 24 Permutationen. Wir checken sie darauf, ob sie Fixpunkte enthalten:
- 1 2 3 4 , 1,2,3,4 sind Fixpunkte
- 1 2 4 3 , 1,2 sind Fixpunkte
- 1 3 2 4 , 1,4 sind Fixpunkte
- 1 3 4 2 , 1 ist ein Fixpunkt
- 1 4 2 3 , 1 ist ein Fixpunkt
- 1 4 3 2 , 1,3 sind Fixpunkte
- 2 1 3 4 , 3,4 sind Fixpunkte
- 2 1 4 3 fixpunktfrei
- 2 3 1 4 , 4 ist ein Fixpunkt
- 2 3 4 1 fixpunktfrei
- 2 4 1 3 fixpunktfrei
- 2 4 3 1 , 3 ist ein Fixpunkt
- 3 1 2 4 , 4 ist ein Fixpunkt
- 3 1 4 2 fixpunktfrei
- 3 2 1 4 , 2,4 sind Fixpunkte
- 3 2 4 1 , 2 ist ein Fixpunkt
- 3 4 1 2 fixpunktfrei
- 3 4 2 1 fixpunktfrei
- 4 1 2 3 fixpunktfrei
- 4 1 3 2 , 3 ist ein Fixpunkt
- 4 2 1 3 , 2 ist ein Fixpunkt
- 4 2 3 1 , 2,3 sind Fixpunkte
- 4 3 1 2 fixpunktfrei
- 4 3 2 1 fixpunktfrei
... also sind 9 von 24 Permutationen fixpunktfrei:
Mit anderen Worten ...
- zieht man eine Permutation per Los, dann sind 9 von 24 = 9/24 = 0,375 = 37,5% fixpunktfrei
- Pierre Montmort gewann 62,5% aller Spiele, nur 37,5% verlor er
- mit ungefähr 1/3 Wahrscheinlichkeit tanzt mindestens ein Paar unter vier Paaren zusammen, wenn ihre Paarungen gelost werden
- sitzt in 62,5% aller Fälle mindestens eine von 4 Schülerinnen in der zweiten Prüfung am selben Platz
- -)