M11 - 4.2 Anwendung der Differentialrechnung bei der Untersuchung ganzrationaler Funktionen (ca. 18 Std.): Unterschied zwischen den Versionen

Aus MINT.lentner.net
Zur Navigation springen Zur Suche springen
(Die Seite wurde neu angelegt: „Zurück zur Übersicht >>> LehrplanPLUS G9 - Mathematik ===Lehrplantext=== Die Schülerinnen und Schüler ... * strukturieren zusammengesetzte Zufallse…“)
 
 
Zeile 5: Zeile 5:
 
Die Schülerinnen und Schüler ...
 
Die Schülerinnen und Schüler ...
  
* strukturieren zusammengesetzte Zufallsexperimente mit Baumdiagrammen, auch unter Zurückführung auf Urnenexperimente.
+
* veranschaulichen die formale Definition der strengen Monotonie anhand geeigneter Skizzen und begründen damit z. B. die strenge Monotonie der Funktion x ↦ x3 (x ∈ IR). Sie erläutern, wie man aus der ersten Ableitung einer Funktion Rückschlüsse auf deren Monotonieverhalten sowie auf deren Extremstellen ziehen kann, und nutzen diese Zusammenhänge bei der Untersuchung ganzrationaler Funktionen.
* machen anhand von Beispielen die Pfadregeln plausibel und berechnen mithilfe dieser Regeln Wahrscheinlichkeiten.
+
* interpretieren das Krümmungsverhalten des Funktionsgraphen als Monotonieverhalten der ersten Ableitung einer Funktion; sie erläutern, dass an einer Wendestelle die Steigung des Funktionsgraphen bzw. die lokale Änderungsrate der Funktion extremal ist, und interpretieren dies im Sachkontext (z. B. Zeitpunkt größten Wachstums). Sie untersuchen das Krümmungsverhalten ganzrationaler Funktionen mithilfe der zweiten Ableitung und ermitteln rechnerisch Wendestellen dieser Funktionen.
* simulieren Zufallsexperimente und bestimmen so Näherungswerte für Wahrscheinlichkeiten, die sie noch nicht berechnen können (z. B. zu den „vertauschten Briefen“ oder zum „Ziegenproblem“), bzw. überprüfen berechnete Wahrscheinlichkeiten auf Plausibilität (z. B. zum „Geburtstagsproblem“).
+
* unterscheiden bei Extremstellen und Wendestellen zwischen notwendigen und hinreichenden Bedingungen. Sie begründen u. a., dass die Bedingung f ′(x0) = 0 notwendig, aber nicht hinreichend für die Existenz einer Extremstelle einer differenzierbaren Funktion f an der Stelle x0 ist.
* bestimmen mithilfe der Monte-Carlo-Methode unter Einsatz eines Tabellenkalkulationsprogramms oder einer anderen geeigneten Software (z. B. unter Verwendung bedingter Anweisungen) einen Näherungswert für die Kreiszahl π. Sie vergleichen dieses Verfahren mit einem nicht zufallsbasierten Verfahren zur Bestimmung eines Näherungswerts von π, das z. B. auf der Streifenmethode beruht.
+
* analysieren ganzrationale Funktionen hinsichtlich ihrer Eigenschaften durch flexible und reflektierte Nutzung der Methoden der Differentialrechnung. Zur Kontrolle ihrer Ergebnisse verwenden sie auch eine geeignete Mathematiksoftware.
 +
* erläutern das Newton-Verfahren als Beispiel eines iterativen Näherungsverfahrens und bestimmen mithilfe dieses Algorithmus, auch unter Verwendung eines Tabellenkalkulationsprogramms, Näherungswerte für Nullstellen, die sich mit den bisherigen Kenntnissen nicht berechnen lassen. Sie sind sich bewusst, dass solche, auf Algorithmen beruhende Näherungsverfahren in unterschiedlichsten Bereichen verwendet werden (z. B. Klimaforschung, Flugzeugentwicklung, Börse), was ihnen erneut verdeutlicht, dass mathematische Kenntnisse für viele Berufsfelder eine wesentliche Grundlage darstellen.
  
 
==Ergänzendes Unterrichtsmaterial==
 
==Ergänzendes Unterrichtsmaterial==

Aktuelle Version vom 20. April 2023, 17:50 Uhr

Zurück zur Übersicht >>> LehrplanPLUS G9 - Mathematik

Lehrplantext

Die Schülerinnen und Schüler ...

  • veranschaulichen die formale Definition der strengen Monotonie anhand geeigneter Skizzen und begründen damit z. B. die strenge Monotonie der Funktion x ↦ x3 (x ∈ IR). Sie erläutern, wie man aus der ersten Ableitung einer Funktion Rückschlüsse auf deren Monotonieverhalten sowie auf deren Extremstellen ziehen kann, und nutzen diese Zusammenhänge bei der Untersuchung ganzrationaler Funktionen.
  • interpretieren das Krümmungsverhalten des Funktionsgraphen als Monotonieverhalten der ersten Ableitung einer Funktion; sie erläutern, dass an einer Wendestelle die Steigung des Funktionsgraphen bzw. die lokale Änderungsrate der Funktion extremal ist, und interpretieren dies im Sachkontext (z. B. Zeitpunkt größten Wachstums). Sie untersuchen das Krümmungsverhalten ganzrationaler Funktionen mithilfe der zweiten Ableitung und ermitteln rechnerisch Wendestellen dieser Funktionen.
  • unterscheiden bei Extremstellen und Wendestellen zwischen notwendigen und hinreichenden Bedingungen. Sie begründen u. a., dass die Bedingung f ′(x0) = 0 notwendig, aber nicht hinreichend für die Existenz einer Extremstelle einer differenzierbaren Funktion f an der Stelle x0 ist.
  • analysieren ganzrationale Funktionen hinsichtlich ihrer Eigenschaften durch flexible und reflektierte Nutzung der Methoden der Differentialrechnung. Zur Kontrolle ihrer Ergebnisse verwenden sie auch eine geeignete Mathematiksoftware.
  • erläutern das Newton-Verfahren als Beispiel eines iterativen Näherungsverfahrens und bestimmen mithilfe dieses Algorithmus, auch unter Verwendung eines Tabellenkalkulationsprogramms, Näherungswerte für Nullstellen, die sich mit den bisherigen Kenntnissen nicht berechnen lassen. Sie sind sich bewusst, dass solche, auf Algorithmen beruhende Näherungsverfahren in unterschiedlichsten Bereichen verwendet werden (z. B. Klimaforschung, Flugzeugentwicklung, Börse), was ihnen erneut verdeutlicht, dass mathematische Kenntnisse für viele Berufsfelder eine wesentliche Grundlage darstellen.

Ergänzendes Unterrichtsmaterial