M13 - 3 Geraden und Ebenen im Raum (ca. 24 Std.)
Zur Navigation springen
Zur Suche springen
Zurück zur Übersicht >>> LehrplanPLUS G9 - Mathematik
Lehrplantext
Die Schülerinnen und Schüler ...
- stellen die Gleichungen von Geraden und Ebenen in Parameterform auf und deuten die lineare Abhängigkeit bzw. lineare Unabhängigkeit von Vektoren anschaulich. Sie stellen, falls möglich, einen Vektor als Linearkombination anderer Vektoren dar.
- stellen die Gleichungen von Ebenen in Normalen- und Koordinatenform auf und ziehen ggf. aus der Ebenengleichung Rückschlüsse auf die besondere Lage der Ebene im Koordinatensystem.
- ermitteln systematisch und begründet die gegenseitige Lage von Geraden, von Ebenen sowie von Geraden und Ebenen zueinander und berechnen ggf. Koordinaten von Schnittpunkten bzw. Gleichungen von Schnittgeraden sowie die Größe von Schnittwinkeln. Zur Veranschaulichung und zur Kontrolle von Ergebnissen verwenden sie eine dynamische Geometriesoftware.
- bestimmen den Abstand zweier Punkte, eines Punkts von einer Geraden oder einer Ebene, zweier windschiefer oder paralleler Geraden, zweier Ebenen sowie einer Geraden von einer Ebene, ggf. auch unter Verwendung der Hesse’schen Normalform.
- stellen Gleichungen von Kugeln in Koordinatenform auf und interpretieren diese. Auf der Grundlage von Abstandsberechnungen bestimmen sie die gegenseitige Lage von Kugeln und Geraden sowie von Kugeln und Ebenen.
- wenden bei Berechnungen an geometrischen Objekten – in Sachzusammenhängen auf der Grundlage einer geeigneten Modellierung – Methoden aus der analytischen Geometrie sowie grundlegende Konzepte und Strategien aus der Unter- und Mittelstufe flexibel und situationsgerecht an. Sie dokumentieren ihre Lösungswege klar strukturiert, präsentieren sie fachsprachlich korrekt in ansprechender und überzeugender Form und beurteilen unterschiedliche Vorgehensweisen vergleichend.