M12 - 1 Modul „Komplexe Zahlen“: Unterschied zwischen den Versionen
Zur Navigation springen
Zur Suche springen
(Die Seite wurde neu angelegt: „Zurück zur Übersicht >>> LehrplanPLUS G9 - Mathematik ===Lehrplantext=== Die Schülerinnen und Schüler ... * strukturieren zusammengesetzte Zufallse…“) |
|||
Zeile 5: | Zeile 5: | ||
Die Schülerinnen und Schüler ... | Die Schülerinnen und Schüler ... | ||
− | * | + | * begründen die Notwendigkeit, die Menge der reellen Zahlen zur Menge der komplexen Zahlen zu erweitern, und sind sich der kulturhistorischen Bedeutung dieser Zahlbereichserweiterung bewusst. |
− | * | + | *stellen komplexe Zahlen in der algebraischen Form z = a + bi dar, berechnen die Werte von Summen, Differenzen, Produkten und Quotienten zweier komplexer Zahlen und deuten Addition und Subtraktion geometrisch mithilfe der Darstellung als Vektoren in der Gauß’schen Zahlenebene. |
− | * | + | * stellen komplexe Zahlen in der Polarform z = |z| · (cos(φ) + i · sin(φ)) dar, wechseln sicher zwischen dieser und der algebraischen Form und deuten Multiplikation und Division geometrisch. Sie entscheiden bei Berechnungen reflektiert, welche Darstellungsform jeweils vorteilhaft ist. |
− | * | + | * lösen quadratische Gleichungen über der Grundmenge der komplexen Zahlen. Sie erläutern, dass jede quadratische Gleichung in der Menge der komplexen Zahlen lösbar ist. |
+ | * berechnen Lösungen von Kreisteilungsgleichungen der Form zn = 1 und interpretieren die so erhaltenen n-ten Einheitswurzeln am Einheitskreis. | ||
+ | * untersuchen im Zusammenhang mit der Mandelbrot-Menge Folgen komplexer Zahlen auf Beschränktheit. Sie veranschaulichen die Mandelbrot-Menge mithilfe einer geeigneten Software. | ||
==Ergänzendes Unterrichtsmaterial== | ==Ergänzendes Unterrichtsmaterial== |
Aktuelle Version vom 20. April 2023, 17:06 Uhr
Zurück zur Übersicht >>> LehrplanPLUS G9 - Mathematik
Lehrplantext
Die Schülerinnen und Schüler ...
- begründen die Notwendigkeit, die Menge der reellen Zahlen zur Menge der komplexen Zahlen zu erweitern, und sind sich der kulturhistorischen Bedeutung dieser Zahlbereichserweiterung bewusst.
- stellen komplexe Zahlen in der algebraischen Form z = a + bi dar, berechnen die Werte von Summen, Differenzen, Produkten und Quotienten zweier komplexer Zahlen und deuten Addition und Subtraktion geometrisch mithilfe der Darstellung als Vektoren in der Gauß’schen Zahlenebene.
- stellen komplexe Zahlen in der Polarform z = |z| · (cos(φ) + i · sin(φ)) dar, wechseln sicher zwischen dieser und der algebraischen Form und deuten Multiplikation und Division geometrisch. Sie entscheiden bei Berechnungen reflektiert, welche Darstellungsform jeweils vorteilhaft ist.
- lösen quadratische Gleichungen über der Grundmenge der komplexen Zahlen. Sie erläutern, dass jede quadratische Gleichung in der Menge der komplexen Zahlen lösbar ist.
- berechnen Lösungen von Kreisteilungsgleichungen der Form zn = 1 und interpretieren die so erhaltenen n-ten Einheitswurzeln am Einheitskreis.
- untersuchen im Zusammenhang mit der Mandelbrot-Menge Folgen komplexer Zahlen auf Beschränktheit. Sie veranschaulichen die Mandelbrot-Menge mithilfe einer geeigneten Software.