M11 - 2 Gebrochen-rationale Funktionen – Grenzwerte und Asymptoten (ca. 15 Std.)

Aus MINT.lentner.net
Zur Navigation springen Zur Suche springen

Zurück zur Übersicht >>> LehrplanPLUS G9 - Mathematik

Lehrplantext

Die Schülerinnen und Schüler ...

  • ermitteln die maximal mögliche Definitionsmenge sowie ggf. die Nullstellen einer einfachen gebrochen-rationalen Funktion (d. h. einer Funktion, bei der sowohl Zähler- als auch Nennerpolynom höchstens den Grad 2 aufweisen und deren Funktionsterm in vollständig gekürzter Form vorliegt). Sie geben ggf. das Zähler- bzw. Nennerpolynom als Produkt von Linearfaktoren an und verwenden situationsgerecht unterschiedliche Darstellungen des Funktionsterms.
  • ermitteln anhand des Funktionsterms – auch mithilfe zielgerichteter Termumformungen – das Grenzverhalten einer einfachen gebrochen-rationalen Funktion für x → +∞ und für x → −∞ und geben ggf. die Gleichung der waagrechten Asymptote an. Besitzt der Graph eine schräge Asymptote, geben sie deren Gleichung an, sofern diese unmittelbar aus dem zugehörigen Funktionsterm ersichtlich ist.
  • ermitteln mithilfe des Funktionsterms das links- und rechtsseitige Grenzverhalten einer einfachen gebrochen-rationalen Funktion für x → x0, um den Verlauf des Graphen in der Umgebung einer Polstelle x0 zu beschreiben. Zur Angabe des Grenzverhaltens verwenden sie die Grenzwertschreibweise und geben die Gleichung der zugehörigen senkrechten Asymptote des Graphen an.
  • analysieren einfache gebrochen-rationale Funktionen hinsichtlich ihrer wesentlichen Eigenschaften, schließen damit auf den Verlauf des jeweiligen Graphen und zeichnen diesen. Umgekehrt schließen sie aus gegebenen Eigenschaften auf einen dazu passenden Funktionsterm. In beiden Fällen überprüfen sie ihre Ergebnisse mithilfe einer geeigneten Mathematiksoftware.
  • ermitteln die Koordinaten von Schnittpunkten der Graphen zweier einfacher gebrochen-rationaler Funktionen bzw. des Graphen einer einfachen gebrochen-rationalen Funktion mit dem Graphen einer linearen Funktion rechnerisch, sofern sich das Lösen der dabei auftretenden Bruchgleichung auf das Lösen einer linearen oder quadratischen Gleichung zurückführen lässt. Die Lösung kontrollieren sie durch reflektierte Verwendung einer geeigneten Software.

Ergänzendes Unterrichtsmaterial